本篇文章给大家谈谈同类项,以及同类项的定义并举例对应的知识点,希望对各位有所帮助,不要忘了收藏本站喔。
同类项的概念及法则如下:
一、概念
1、如果两个单项式,他们所含的字母相同,并且相同字母的指数也分别相同,那么就称这两个单项式为同类项。比如4y与5y,100ab与14ab,6c与6c。
2、此外所有常数项都是同类项(常数项也叫数榴莲视频.apk.1.1renamev2.6字因数)。在求代数式的值时,常常先合并同类项,简化代数式后再求值,这样比较简便。
二、法则
1、合并同类项后,所得项的系数是合并前各同类项的系数之和,且字母连同它的指数不变。字母不变,系数相加减。
2、同类项的系数相加,所得的结果作为系数,字母和字母的指数不变。
三、补充说明
1、如果两个单项式,它们所含的字母相同,并且各字母的指数也分别相同,那么就称这两个单项式为同类项。如与都是同类项。所有的常数项也都是同类项。
2、把多项式中的同类项合并成一项,叫做同类项的合并(或合并同类项)。同类项的合并应遵照法则进行:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变。
3、合并同类项的理论依据:其实,合并同类项法则是有其理论依据的。它所依据的就是大家早已熟知了的乘法分配律。
所含字母相同,并且相同字母的指数也分别相同的项叫做同类项。
像4y与5y,100ab与14ab这样,所含字母相同,并且相同字母的次项的指数也相同的项叫做同类项,所有常数项都是同类项。(常数项也叫数字因数)
法则
多项式中的同类项可以合并,叫做合并同类项,合并同类项的法则是:同类项的系数相加,所得的结果作为系数,字母和字母的指数不变。
举例
1. 多项式3a-24ab-5a-7—a+152ab+29+a中
3a与-5a是同类项
-24ab与152ab是同类项 【同类项与字母前的系数大小无关】
2. -7和29也是同类项【所有常数项都是同类项。】
3. -a和a也是同类项【-a的系数是-1 a的系数是1 】
4. 2ab和2ba也是同类项【同类项与系数和字母的顺序无关】
5.(3+k)与(3—k)是同类项。
如果两个单项式,他们所含的字母野花2019最新社区相同,并且相同字母的指数也分别相同,那么就称这两个单项式为同类项。比如4y与5y,100ab与14ab,6c与6c。
此外所有常数项都是同类项(常数项也叫数字因数)。在求代数式的值时,常常先合并同类项,简化代数式后再求值,这样比较简便。
扩展资料:
1、同类项:所含字母相同,并且相同字母的指数也相同的项叫做同类项。几个常数项也是同类项
典题:如果-2x2yn和3xmy3是同类项,那么n=3 ,m=2 。
2、合并同类项:把多项式中的同类项合并成一项。合并后,所得项的系数是合并前各同类项的系数的和,且字母部分不变。
(1)合并同类项中,需要交换加数位置,注意各项系数的符号性质,不能只交换绝对值,而丢了符号
(2)全并同类项中,需要运用加法结合律及乘法分配律的逆运算,添加括号时,如果括号中第一项的系数是负数,建议恢复这个项前面的“+”号
(3)先观察是否存在表示相反数的项,可以直接抵消
(4)有时可以将诸如(a-b)这样的简单式子看成一个整体。即将式子看成一个字母
参考资料:百度百科——同类项
同类项的介绍就聊到这里吧,感谢你花时间阅读本站内容,更多关于同类项的定义并举例、同类项的信息别忘了在本站进行查找喔。